Interaction in Quantum Communication Complexity
نویسندگان
چکیده
One of the most intriguing facts about communication using quantum states is that these states cannot be used to transmit more classical bits than the number of qubits used, yet there are ways of conveying information with exponentially fewer qubits than possible classically [2, 21]. Moreover, these methods have a very simple structure—they involve little interaction between the communicating parties. We look more closely at the ways in which information encoded in quantum states may be manipulated, and consider the question as to whether every classical protocol may be transformed to a “simpler” quantum protocol of similar efficiency. By a simpler protocol, we mean a protocol that uses fewer message exchanges. We show that for any constant k, there is a problem such that its k+1 message classical communication complexity is exponentially smaller than its k message quantum communication complexity, thus answering the above question in the negative. Our result builds on two primitives, local transitions in bi-partite states (based on previous work) and average encoding which may be of significance in other applications as well.
منابع مشابه
Privacy and Interaction in Quantum Communication Complexity and a Theorem about the Relative Entropy of Quantum States
We prove a theorem about the relative entropy of quantum states, which roughly states that if the relative entropy, S(ρ‖σ) ∆ = Tr ρ(log ρ− log σ), of two quantum states ρ and σ is at most c, then ρ/2 ‘sits inside’ σ. Using this ‘substate’ theorem, we give tight lower bounds for the privacy loss of bounded error quantum communication protocols for the index function problem. We also give tight l...
متن کاملTransannular Interaction in N-Aryl-5-Azocanones, A Semiempirical Quantum Mechanics and UV Spectroscopy Studies
The ability of the present semiempirical quantum mechanics methods are surveyed for reproducing the transannular interaction in the bifunctional N-phenyl-5-azocanones. The AM1 method is the best with the order of reliability being Am1, PM3, MNDO and MINDO/3. AM1 calculations were then carried out for quantification of transannular interaction. The n(o) ionization potential has be...
متن کاملRole of negative dielectric and optical quantum dot waveguiding methods in communication
While the application of optical and photonic technologies in the communications, computing, medicine and industrial manufacturing has been growing rapidly, the miniaturization of these technologies has been slow due to the limitation on the diffraction. However, the developments of nanoscale components and guiding methods are continuing with a rapid pace. Since waveguiding is a fundamental iss...
متن کاملدرهمتنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهمکنش ژیالوسینکی - موریا
Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...
متن کاملControl Communication Complexity of Nonlinear Systems∗
The interaction of information and control has been a topic of interest to system theorists that can be traced back at least to the 1950’s when the fields of communications, control, and information theory were new but developing rapidly. Recent advances in our understanding of this interplay have emerged from work on the dynamical effect of state quantization together with results connecting c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره quant-ph/0005106 شماره
صفحات -
تاریخ انتشار 2000